
The Art of Systems Engineering
A Chapter for the NASA Systems Engineering Handbook

By
John F. Muratore

Research Associate Professor
Aviation Systems and Flight Research

University of Tennessee Space Institute

Introduction

In modern systems engineering education, we mostly teach process. It is easy to
understand why. There are many important systems engineering processes which have
been developed over the years such as configuration management, requirements
decomposition and hazard analysis. It is also easy to understand why engineering
educators have focused on these processes. Engineers as a group like process. It is easy to
teach process because it doesn’t generally require innovative thinking and it is easy to tell
when you are finished. Further, because many systems engineering processes are
mandated on US government contracts for large systems development by NASA and the
military, teaching of process is a lucrative industry for which there is continuing demand.

These systems engineering processes represent significant lessons learned and are an
important part of successful projects. All good systems engineers should be
knowledgeable and practiced in them. For examples, at the University of Tennessee
Space Institute we teach the following processes to graduate students in Aviation
Systems:

• Requirements Development Functional Decomposition and Allocation
• Requirements Traceability and Verification
• Design Review and RID processing
• Hazard Analysis
• Risk Management
• Configuration Management and Change Control
• Mass Properties Management
• Interface Control
• Trade Studies Management and Analysis of Alternatives
• Technical Performance Metrics and Key Performance Parameters
• Architecture definition and frameworks
• Technology Readiness Levels
• Natural and Induced Environments definition

However, good systems engineering consists of more than just successful execution
of process. Good systems engineering has a definite component of artistry to it. This
art of systems engineering is hard to define and the purpose of this chapter is to put
some definition into the art of systems engineering. This chapter will use a lot of
aviation examples, as aviation has been around for significantly longer than
spaceflight and offers many examples of good and bad applications of the art of

systems engineering. But the subject of this chapter is applicable to all NASA
systems, whether aircraft or spacecraft, ground systems or flight systems, science
instruments or supporting systems.

The two natures of SE

In order to perform good systems engineering, you need to use both halves of your
brain. We know from psychologists that the human brain segregates thinking
activities into the brain’s two halves. The left half is said to be more analytical,
helping you with math, logic, and speech The right half helps you think about abstract
things like music, colors, and shapes.

In systems engineering, there is a left half brain part that is about being compulsive
about identifying requirements, decomposing them, tracking their verification etc…
This is the part of the brain that helps you perform the process part of systems
engineering. Then there is a right half brain part that is about intuitively inquiring
about and understanding how all the parts of a complex system interact and
engineering them to interact in desirable and predictable ways. This is the part of the
brain that helps you do the art of systems engineering.

The importance of both process and art – the bathroom analogy

Good systems engineering is in many ways about using both halves of your brain to
work on systems problems. It is not only satisfying to use all of the parts of your
brain, it is also necessary to have successful projects.

To explain the importance of performing well in both the art of systems engineering
and the process of systems engineering, I like to use an analogy to everyday life. We
are taught early in life to wash our hands after going to the bathroom. It is good
advice to prevent the spread of many easily prevented disease organisms. It is also a
process.

But if you have a serious illness, not caused by the particular pathogens acquired in
daily hygiene, things like cancer, diabetes or heart disease, you can wash your hands
all day long and you are not going to stay in good health. In this case, you need more
serious intervention and simple process is not going to keep you healthy.

Similarly in projects, if you have a good engineering approach in a project, keeping
track of all those systems engineering processes will keep things healthy. But if you
have a bad engineering approach, you can run systems engineering processes all day
long and it isn’t going to fix the fundamental problems. When you have fundamental
engineering issues of a system nature, then you need the art of systems engineering to
maker things right.

Joint Strike Fighter – Triumph of Art over Process

The Joint Strike Fighter (JSF) is an interesting example of how art can be more
important than process in developing systems. The Department of Defense (DOD) ran
a competition to develop the next generation strike fighter aircraft for multi-service
and multi-nation use. Two major aerospace companies squared off in a multi-billion
dollar fight. I was not personally involved in this process, but as best I can determine,
both companies produced excellent well engineered aircraft that exactly met all of the
design requirements. But they approached the problem with two different views.

The Boeing team, which produced the X-32 prototype, was optimized to meet all the
requirements including the specified capabilities with the specified growth
capabilities. The Boeing prototype represented total execution of a process to deliver
the minimum cost and minimum risk vehicle to meet the requirements. The JSF had a
requirement to perform Vertical Takeoff and Landing (VTOL) in addition to
conventional runway takeoff. In order to meet this requirement, Boeing selected a
propulsion technology that had been used on the previously selected Harrier aircraft.
This is called direct-lift technology and involves rotating nozzles that direct engine
thrust downward. This technology was low risk and met the design requirements but
is relatively inefficient and did not provide much additional growth capability above
the required capability and specified growth requirements.

The Lockheed Martin team, which produced the X-35 prototype, decided to pursue a
more risky approach. They utilized a technique known as lift-fan which involved
coupling the engine directly to a lift fan which generated the downward flow of air
for VTOL. This technique is significantly more efficient however it involved a
complex technology to couple the jet engine to the lift fan which had not really been
used before. Thjus although this technique had growth potential above the specified
capability and growth requirements, it involved a higher risk approach.
To some in the aerospace community, the X-35 also had a significantly more
appealing outer moldline (partially due to the lift fan and partially due to other
factors).

Boeing X-32 (left), Lockheed Martin X-35 (right)

In the end, the DOD selected the Lockheed Martin X-35. The additional growth
capability provided by the lift fan as well as the outer moldline trumphed over the
exact fulfillment of the DOD’s specified requirements exhibited by Boeings X-32.

X-35 Powered Lift Fan

I would argue that this represented the triumph of art versus process. It represents a
demonstration that the total vehicle is more than a summary of meeting requirements
and that often unstated requirements are the most important. It also represents the
continuing truth of the ancient and totally unscientific right half brain adage of the
aviation industry “If it looks good, it will fly well”.

How do we define the art of systems engineering ?

If the art is important, how do we define art. After all, most engineers are not artistically
oriented. I consulted a friend of my who is an artist and although I am assured that I don’t
understand the process of teaching real art, my left half brain identified the use of
elements of style as a way of characterizing an art. Pursuing this theme, I identified seven
elements of style defining the art of systems engineering. This is not a comprehensive list
and a look forward to dialogue from readers on better identification of these elements.
But for the purposes of an initial list, the elements of style are captured by systems that
have the following characteristics:

• Robustness
• Elegance
• Balance
• Growth Capability
• Visibility
• Reasonableness
• Complexity

In this chapter we will examine each of these elements in order to better define them.
These elements represent a solid framework to use to evaluate system designs and the
adequacy of systems engineering within a project or program.

Robustness

Robustness is a characteristic that describes the sensitivity of a system to boundary
conditions or off-nominal conditions and configurations. Robustness answers the
question as to whether a system gracefully degrades or is there nonlinear behavior of the
system at its boundaries. It also describes the behavior of the system as components fail
either within the system or outside the system.

There are known techniques to evaluate robustness. Sensitivity analysis, performed either
by computer modeling or test, provide visibility into the performance of systems at
boundary conditions. Sensitivity analysis is a key technique that should be performed
during system design and verification in almost any type of system. Flight test
professionals speak of “expanding the envelope”. This is basically a process of
determining robustness by gradually expanding the envelope of speed and altitude over
which an aircraft has flown in order to determine its sensitivity. This is an inherently
hazardous activity and in modern aviation is preceded by extensive simulation in
computers and ground test facilities such as wind tunnels to understand the sensitivity to
boundary conditions.

One of the dangers of computer simulation is that computer models are often built with
linear or simplified models of system performance and they may not be accurate at
boundary conditions.

Monte Carlo analysis is a technique which can be used with sensitivity analysis as
multiple parameters can be varied within distributions to determine if combinations of
parameters can cause unexpected system behavior.

One of the least expensive and most powerful techniques for determining system
robustness is the application of imagination informed by knowledge of basic fundamental
sciences and existing predictive data and modeling for a system. System configurations
can be examined to determine where the linear assumptions break down and the
sensitivity at those points examined. This type of analysis should be performed on
systems and subsystems at major system design points.

Characteristics that contribute to robustness are fault tolerance and margin. Systems that
incorporate features which increase system fault tolerance are usually more robust than
those which do not. Systems with greater margin about design requirements also are
usually more robust than those with less margin. Both of these are characteristics which
should be examined as a part of system design.

Fault tolerance is normally defined as the ability to withstand failure and still perform
system functions. Systems are characterized by the number of failures that they can
tolerate while still performing their function. Zero fault tolerant refers to those systems
where any single fault can invalidate their functioning. Single fault tolerance refers to
systems that can withstand a fault in any single component and still perform their
function. Dual and triple fault tolerant systems can support failures in any two or three
components and still perform their system functioning.

One of the major techniques in fault tolerance is system redundancy. This involves
placing additional components in a system so that failures in any component do not
prevent the system from being able to function. This can involve placing additional
individual components such as adding a primary or secondary battery to an electrical
system or placing primary and secondary pumps in a fluid loop. It also can involve
adding an entire system which replicates the functioning of the first.

Redundancy can be in placing additional copies of similar systems or components in a
system design or in placing dissimilar components that can accomplish the same system
function. Fault tolerance of support systems such as electrical power is often improved by
adding additional systems For example, in the shuttle propulsion system there are two
Orbital Maneuvering Engines (OME) that are used to change orbits including the deorbit
orbital maneuver for re-entry. This is an example of similar redundancy. Within each
engine there system are many redundant components to improve fault tolerance but there
are many components which cannot be replaced such as the combustion chamber and
nozzle of each engine. In order to further improve the fault tolerance of the system, the
orbiter aft facing Reaction Control Jets (RCS) can perform the deorbit maneuver to return
the crew home. This is a case of dissimilar redundancy. To make this work, fuel and
oxidizer feed valves are added to the system so that the RCS jets can be fed from the
propellant tanks that normally support the OME.

Shuttle OMS Pod with aft facing RCS jets

In many types of systems, it is impossible to completely replicate the system. This
happens commonly in structures. For example it is usually not possible to add additional
wings to a vehicle. In these cases a margin based approach is used. A design limit load is

established for a system which defines the highest possible load that a system will
encounter in its performance envelope. Then a factor of safety is established and the
system is designed, tested and analyzed to show that it has margin above the required
design limit load times the factor of safety. This approach is typically used on structures
and pressure vessels in spacecraft.

In system design it is assumed that when a system is designed with a design limit load
and factor of safety that it is not susceptible for failure in its environment. Structures,
pressure vessels, plumbing and electrical wiring are usually dealt with in this manner and
are assumed to not to be failure proof when operated under their design limits. Note that
just because components are considered failure proof, it does not mean that connections
between components automatically inherit that characteristic. For example, in a
propulsion system, tanks and plumbing are considered failure proof when operated within
their design limits but the interface between a tank and a plumbing, a weld or a fitting,
can fail or leak. In electrical systems, even though wiring is normally considered failure
proof, it is possible for a short circuit to occur which overstresses or ignites the wiring.

The design of the Saturn V launch vehicle tells us a lot about the importance of
engineering robustness into system design, even when the requirements, however
carefully determined and allocated, do not call for it. The original Saturn V first and
second stage designs met all known requirements with four engines. Von Braun’s team at
Marshall Space Flight Center added a fifth engine to first and second stage for margin
above the stated requirements, concerned that weight growth in the Apollo spacecraft
would invalidate their efforts if this robustness was not added. As it turns out, Apollo
would not have been possible if that performance had not been available as mass in the
command/service module and lunar module grew significantly. The additional
performance also enabled more science content in the later Apollo J missions than in the
first few lunar missions.

Saturn V First Stage

Robustness does not necessarily have to cost significant weight or even cost. If during
system design, the designers evaluate the possible interaction between components in
failure modes, it is often possible to improve fault tolerance without adding complete
components or systems. For example, in the design of the X-38 flight control system we
were able to establish single fault tolerance in a system that did not have any replicated
components. During the X-38 design process we were examining the fly-by-wire control
systems. Fly-by-wire means that the computer controls the vehicle by sending electrical
signals that command aerosurfaces (flaps and rudders) to move. During this process we
asked what would happen if the computer interface electronics failed off. It turned out
that the off state resulted in a command to the surface actuators that forced the surfaces
into a hard-over (full range) condition. A few quick simulations showed that this
configuration was uncontrollable. We then asked the question if the vehicle could be
controllable if the surfaces failed to any other position. We quickly found that if any one
surface failed to a mid-range position that the other three surfaces could compensate and
keep the vehicle stable. Addition of some pull-up resistors ensured that the actuators were
scaled so that the fail off state of the computer interfaces resulted in mid-range on the
surfaces. This established a highly robust configuration that was able to withstand loss of
computer commands to any one surface and yet maintain stable flight. It is worth noting
that thus change was only possible because of the concerted effort of multiple disciplines
(avionics, flight controls, flight software) working together for a system goal (stable
flight in the event of failure).

X-38 In Flight

Finally margin can be added by examining where a system becomes nonlinear and then
adding devices to ensure control of the system as it enters the non-linear region to ensure
predictable performance. In aviation, one of the most important non-linear behaviors is
the performance of aircraft as the flow over the wing separates in a stall. Over the years a
number of devices have been added to warn the operator of this condition (stick shakers,
stall warning horns, angle of attack indicators) or to control the stall progression (wing
twist, stall strips, vortex generators, canards) so that the aircraft stalls in a repeatable and
easily controlled way. It is interesting to note that the first practical heavier than air craft
of the Wright Brothers employed a canard (a pitch control surface forward of the center
of gravity) in order to prevent an uncontrollable stall.

Elegance
The second element of style to be examined is elegance. We define elegance in system
design as the degree to which a system design reflects simple unifying principles. An
elegant design is one in which a single simple unified design solves all cases in which the
system is intended to operate. An inelegant design is one which requires unique and
different features to deal with cases that the system faces in normal operation.

Design elegance can be determined by examination of the system design over its entire
intended operating envelope. When this examination reveals that the system needs special
and distinct design features to deal with different cases, the design is said to be less
elegant. Requiring special design features does not necessarily mean that a design is bad
or inappropriate. But as the features become more intrusive and different, the less elegant
and desirable that the design becomes. Pejoratively, these special features are referred to
as “kludges” (pronounced “kloodj”).

Balance

A balanced system is one where all of the disciplines of the design are considered and are
engineered to work together to accomplish a common purpose. A balanced design can
have certain design aspects that are paramount but all of the other aspects are engineered
to account for that. For example the Voyager aircraft that flew around the world on a
single fuel load was optimized for range. “No compromise for range” was Burt Rutan’s
battle cry during its design and manufacture. However an examination of the design
shows that propulsion, fuel system, aerodynamics, structure and flight controls were all
harmonized into a balanced design that had the range to fly around the world un-re-
fueled. Unbalanced designs are often proposed and many are built. But few unbalanced
designs have sustained superior performance.

Voyager

The Helios unmanned solar powered research aircraft provides an interesting case in
point. Funded by NASA and constructed by Aerovironment, this The Helios Prototype
was an ultra-lightweight flying wing aircraft with a wingspan of 247 feet (75.3 m), longer
than the wingspans of the U.S. Air Force C-5 military transport (222 feet (67.7 m) or the
Boeing 747 (195 feet (59.4 m) or 215 feet (65.5 m), depending on the model). The
electrically powered Helios was constructed mostly of composite materials such as
carbon fiber, graphite epoxy, Kevlar, styrofoam and a thin, transparent plastic skin. On
August 14, 2001, the Helios Prototype piloted remotely by Greg Kendall reached an
altitude of 96,863 feet (29,523.8 m), a world record for sustained horizontal flight by a
winged aircraft. On June 26, 2003, the Helios Prototype broke up and fell into the Pacific
Ocean about ten miles (16 km) west of the Hawaiian Island Kauai during a systems
checkout flight in preparation for an endurance test scheduled for the following month.
This failure was the result of not properly balancing the structural response to gusts, the
aerodynamics and the flight controls of the vehicle. As the mishap report states “The
aircraft represents a nonlinear stability and control problem involving complex
interactions among the flexible structure, unsteady aerodynamics, flight control system,
propulsion system, the environmental conditions, and vehicle flight dynamics. The
analysis tools and solution techniques were constrained by conventional and segmented
linear methodologies that did not provide the proper level of complexity to understand
the technology interactions on the vehicle’s stability and control characteristics. “

Helios configuration

Helios

Balance is hard to achieve because of the nature of discipline engineering required to
build aerospace craft. As captured in the attached cartoon, most aerospace vehicles
consist of products produced by different discipline specialties and they tend to see
vehicles as being dominated by their contribution. Although this cartoon is amusing, my
experiences on multiple air and space vehicle designs indicate that it is more often true
than not. As a result, vehicles where one discipline dominates tend to occur on a regular
basis. It is interesting to note that more realistic versions many of the vehicles pictured in
the cartoon were actually built. The GEEBEE, a realistic version of the vehicle pictured
in the Propulsion Group view, was a racing plane built in the 1930’s and although
optimized for propulsion, it did not have balance in its stability and control and was not a
sustained world-beating aircraft. The Supermarine Spitfire, a realistic version of the
aerodynamicist’s dream aircraft, was successful throughout World War II although it was
generally considered inferior to the North American P-51 Mustang, which although
powered by the same engine, had a superior overall configuration.

GeeBee

Supermarine Spitfire

The need for balanced design is why it is vitally important for systems engineers to know
what is important in a given design. Not all elements of the design get the same attention
or need the same amount of rigor. In a world of limited resources it is important to
“sharpen your pencil” only on the important areas of the design. However all elements
must be considered to ensure that they are working together instead of against each other.

P-51 Mustang

Balance must occur not only at the system level but within subsystems as well. Glenn
Bugos in his book “Engineering the F-4 Phantom II Parts into Systems” talks about he
need in subsystem design for continuing cycles of

• Aggregation – finding the parts (often off the shelf) to make a system function
• Disaggregation – talking them apart to identify the pieces you need
• Re-aggregation – putting them back together in a way that is optimized for a

given application

There is so much good off the shelf aerospace hardware available today, and the desire to
reduce development cost is so important, that we have trained a generation of subsystem
engineers to aggregate as much off the shelf equipment as they can. We have not
emphasized that for high performance applications you may need to disaggregate and
then re-aggregate components into subsystems.

As an example, the X-38 was a prototype for the Crew Return Vehicle for the
International Space Station intended to serve as an ambulance and a lifeboat for the
station. It operated as a lifting body during entry and flew under a parafoil during final
descent and landing. During the initial X-38 test flights we used a separate Guidance,
Navigation and Control system for two phases of flight – lifting body phase and parafoil
phase of flight. The parafoil GN&C was off the shelf and it allowed us to partition our

efforts. As the program progressed it was clear that the parafoil GN&C was very limited
and that the weight of the separate system was not acceptable for the space test vehicle.
We took apart the functions of the parafoil GN&C and integrated them with the lifting
body GN&C resulting in a lighter weight system, with simpler crew interfaces and
greater functionality

As another example, the telecommunications front-end of the Johnson Space Center
Mission Control Center in the mid 90’s consisted of close to 100 racks of electronics
These systems had accumulated over time and as new functionality was required, the
easiest solution to add onto the system was taken. Each of the racks required spare parts,
logistics, operations and maintenance personnel. During the MCC redesign, we found
that the same functions were being reproduced at many places in the architecture
We repackaged the functionality into less than half of the original number of racks with
common commercial off the shelf parts. This resulted in significantly reduced operations
costs and greater automation and functionality.

Balance also involve mutual support between systems. In many cases, deficiencies in one
subsystem can be compensated for by cooperative design in other subsystems, Two
examples of this occurred during the X-38 design.

During the design of the X-38 flight control system we had initially a zero fault tolerant
air data system for sensing angle of attack. The flight mechanics community realized that
based on the pitch attitude and pitch rate in response to a commanded surface position
that they could estimate angle of attack sufficiently to maintain control. These parameters
were available from the inertial measurement system, a separate system from the air data
system. We built in a system using available inertial sensors to back up the air data
system

In another example. ElectroMechanical Actuators (EMAs) were used in the X-38 flight
control system to move the flight control surfaces. EMAs required power to hold loads
but actually back generated current under certain conditions in the same way that power
is re-generated in modern hybrid cars. Initially we used current shunts to deal with the
generated power, but then we learned to put the re-generated power back into the
batteries. This significantly reduced battery requirements for the vehicle.

Growth Capability - Scalability , and Extensibility

Another important element of style is growth capability. It is a simple fact of life that
most systems have a longer and more diverse operational life than stated in the original
design requirements. When the Space Shuttle was designed, each vehicle was designed
for 100 missions with a 10 year operational life. The designers would have been shocked
to find out that a total of 126 missions were flown over a 30 year life. Many of the current
problems of the Space Shuttle are due to the fact that the system was designed for a
relatively short life and was not designed for maintenance or upgrades. It has to be
remembered that when the Shuttle was designed, the United States had just built 4

generations of spacecraft (Mercury, Gemini, Apollo and Skylab) in just over a decade.
The idea of a single spacecraft spanning three decades was simply out of their experience
or imagination.

In fact, the entire aerospace business has gone to much longer lived systems. The basic
B-52 was originally designed in the late 50’s and will still be in service in 2010. All of
our front-line combat aircraft are in similar extensions.

Not only is life extended, but missions change as time goes on. The B-52 for example
was a long range strategic bomber. With the advent of GPS guided munitions and high
performance satellite communications links with ground troops, it has evolved into an
unexpected close support aircraft. Similarly the shuttle was designed for carrying
deployable satellites and attached payloads. Now the shuttle is almost exclusively
performing International Space Station (ISS) servicing missions. Even robotic spacecraft
now are performing secondary or even tertiary missions after their primary missions are
completed. Sometimes these missions were not even imagined before the spacecraft was
launched.

So an essential element of style in engineering systems is ensuring the proper growth
capability is incorporated into the basic system design so that it can be adapted or
modified as its life is extended and its mission changes. There are three terms we use
when describing the element of growth. These are excess capability, scalability and
extensibility.

Systems with excess capability are the easiest to understand. If a launch vehicle has a
design goal of lofting 35,000 pounds to low earth orbit and it actually can lift 38,000
pounds, it has 3,000 pounds of excess capability for growth. It is important to realize that
most systems lose performance as they age. In re-usable systems, some of this is due to
accumulated weight and wear and tear on components. Accumulated weight can be from
minor items like dirt, paint, and debris, which nonetheless can add significant weight. In
addition, as systems are upgraded or maintained, sometimes wire or equipment that is no
longer functional remains in the system as it may be too difficult to remove. This is very
typical in wire harnesses as sometimes it is difficult to extract wire that is no longer
required from existing harnesses without causing collateral damage to other wires in a
harness during the removal process. Because of this weight growth, additional
performance is always required at end of life.

Scalability is the ability of a system to grow to provide additional capacity. Scalability
usually involves the ability of a system to easily add components to add capability. For
example a computer system that contains 2 processors nominally but that can then add
additional processors to handle more workload is said to be scale-able. Scalability is very
difficult to achieve in most aerospace systems as they usually do not scale well because
of physics based limitations.

Extensibility is the ability to adapt a systems design to incorporate additional functions.
Extensibility must be designed in from the start to be effective. Extensibility is a property

that can be achieved by aerospace systems. For example the Russian Mir space station
and the International Space Stations were/are both extensible systems.

Extensibility is provided by “hooks” and “scars”. Hooks are provisions in software to
allow growth. For example software can be developed to be able to perform thermal
control by monitoring a single temperature transducer and then sending a command to a
heater. When the software is designed, it can be designed to perform control based on
multiple transducers or to perform the same type of control action on multiple pairs of
temperature sensors and heaters. When this software is installed in a system that initially
only has one sensor and one heater but retains the capability to handle additional
hardware it is said to have “hooks” to handle additional strings of sensors and heaters.
Scars are provisions in hardware for adding additional functions. An extra power outlet in
a power system is a simple type of scar.

Techniques exist to help maintain scalability, extensibility and growth capability in
systems. One technique is to build a established standards, particularly on interfaces.
Building on standards often facilitates future growth and expansion. Monitoring and
managing technical budgets that contain a growth reserve during development is another
way to provide future growth capability. Engineering hooks and scars to extend
capability during initial design are additional techniques. Growth capability is usually
limited by physics based limitations, so modeling to understand these limitations can
sometimes determine how much effort should be expended into maintaining growth
options.

 To understand the importance of design with growth in mind, the reader should consult
Glenn Bugos’ excellent book “Engineering the F-4 Phantom II, Parts into Systems”
published by the Naval Institute Press in 1996. This book describes the life history of the
F-4 Phantom II, one of the longest lived and most successful combat aircraft of the 20th
century. In his first chapter, he describes how previous successes and failures had taught
McDonnell (the designer and manufacturer of the Phantom II) the importance of a multi-
mission aircraft, even though the original Navy specification called only for a fleet
defense fighter/interceptor. By the end of its life, the Air Force had bought three times as
many aircraft as the Navy. The Air Force used these aircraft as fighter bombers, anti-
surface to air missile and reconnaissance aircraft and many nations bought and built
variants for a variety of tasks. The decisions to use two engines and provide for two crew
members provided versatility in the basic airframe that allowed it a long life and multiple
roles.

Visibility

John Aaron, the legendary flight controller of the Apollo 12 and 13 missions and a major
leader in the development of the Space Shuttle flight software once said to me that
“software is inherently invisible” and that to understand its function one had to carefully
design in features, environments and tests to make its functions visible. I would
generalize John Aaron’s assertion to “All systems are inherently invisible, especially

software intensive systems”. An essential element of style in systems engineering is to
recognize this nature of systems and then to design visibility into systems so that their
functioning can be understood.

There are many “paintbrushes” in the system artist’s toolkit to help ensure systems
visibility. Instrumentation is a key tool. The design of instrumentation for ground and
flight test during design verification is critical to well engineered systems. It is impossible
to verify that systems meet requirements without instrumentation. Given the large amount
of attention given to master verification plans and requirements verification matrices in
traditional process based systems engineering, it is remarkable that little focus is provided
in traditional process based systems engineering into properly instrumenting systems so
that they can be verified. Instrumentation is usually left to the domain of very specialized
engineers whose connectivity to the test verification objectives is often tenuous.
Instrumenting operational systems is even more critical. Operational instrumentation
must provide visibility to operators to ensure proper system functioning while also
providing sufficient diagnostic and trend monitoring data to help the maintenance
organization and the sustaining engineering organization to perform their functions.
Familiarity with instrumentation techniques, sensor types, their advantages and
limitations is critical to the art of systems engineering. Instrumentation may consist of
traditional systems such as sensors for temperature, pressure, voltage etc… or may be
items such as imagery to verify system performance.

Monitoring the performance of system to compare it to predictions is a key tenet of
modern systems verification and especially of flight testing. In fact, the mantra of the
United States Air Force Test Pilot School at Edwards Air Force Base, the original
inspiration for the term “The Right Stuff” has now become “Predict, Test and Validate”.

A commitment to instrumentation also requires a commitment to record and process the
data from that instrumentation in order to make it useful in decision making. The process
of establishing a database of recorded instrumentation so that data can be reviewed for
emerging trends is a key enabling technology for proper systems engineering of projects.
The term “data mining” is used to describe the process of examining systems
performance records in a postflight or non real time environment order to establish trends
or determine changes in systems behavior. In addition to real time monitoring, it is vitally
important to postflight compare the performance of the system to predictions and to the
initial design requirements of the system. It is possible to have excellent real time
monitoring of a system without a commitment to this type of closed loop trend
monitoring. Lack of commitment to this process was one of the contributing factors cited
by the Columbia Accident Investigation Board in the loss of the Space Shuttle Columbia.
The lack of this type of long term monitoring of trends in navigation data was also
established as one of the causes of the loss of the Mars Climate Orbiter spacecraft.

Alerts and warnings as well as displays and controls are additional important
“paintbrushes” in the system artist’s toolkit. These tools can be valuable during systems
verification as well as during operations and maintenance to provide visibility into
systems functioning. To properly implement these systems requires both knowledge of

system monitoring techniques as well as human factors. Given that almost all systems
ultimately interact with humans, it is also remarkable that human factors is not considered
a major part of most systems engineering training and practice and is relegated to a
relatively specialized discipline of human factors experts. Human factors professionals
are a key resource for any successful systems artist, however the successful system artist
must have sufficient knowledge in this area to recognize that interface to humans is the
most pervasive interface in most systems (whether in assembly, test, operations or
maintenance) and that attention to proper system visibility is critical in almost every
aspect of the design. This is especially critical in the design of alerts, warnings, displays
and controls which provide real time visibility into system performance.

The lack of attention to increasing visibility into system function by instrumentation and
human factors in every aspect of system design can have dire consequences. At least two
Airbus crashes have been blamed on what is called “mode confusion” This occurs when
the operator of the system thinks that the system is in one mode of operation when it is
actually in another. What is particularly interesting about these crashes is their
relationship to each other. In one crash, the aircraft was approaching the runway and the
pilot called for a go-around. The pilot thought that the aircraft was in Takeoff Go Around
(TOGA) Mode which provides maximum thrust/maximum lift to climb away when the
aircraft was actually in an approach mode which provides a low rate descent. In this case,
the aircraft continued to descend until it crashed. In the other crash, the pilot was in a
descent for landing and the aircraft switched to TOGA. The pilot fought with the aircraft
trying to get it on the runway, while the aircraft was trying to climb away from the
runway. This resulted in a crash on the runway. Confusion about the TOGA mode versus
the descent/approach mode was the cause in both crashes although the situations were
reversed. Clearly greater visibility into the software mode was required.

The nuclear accident at Three Mile Island is another case where visibility of the system
was required but the actual state of the system as invisible to the operators. In this case, a
Pressure Relief Valve failed open. The open pressure relief valve allowed the liquid level
in the relief system to climb. The operators were trained to believe that this indication
was an indication of excess fluid in the core of the reactor, They were desperately
concerned about the liquid level becoming so high that there was no gas in the top of the
system to absorb pressure fluctuations. This “hard manifold” case would’ve resulted in a
rapid system rupture and the escape of radioactivity from the core of the reactor. As a
result of this concern, they rapidly dumped cooling water from the system causing a drop
in the cooling liquid level. The liquid level got so low that the reactor dangerously
overheated. Alternate temperature instrumentation that would have told them that the
reactor coolant water temperature was dangerously high was defeated because the system
was at the upper end of its temperature range but did not warn the operators that the
indicator was at the top of its possible range (offscale). Unaware that the indicator could
not read higher, the operators assumed that the reactor water was still cool. This case is
explained in great detail in James Chiles book “Inviting Disaster, Lessons From the Edge
of Technology” and represents a solid case where lack of visibility into a system function
nearly resulted in disaster.

Three Mile Island

It is interesting to note that Chiles observes in another chapter of this book that the chain
of events that led to the Apollo 13 inflight explosion was set in place by overheating of
heater circuits in an oxygen tank during an off-nominal prelaunch procedure. During this
procedure, the temperature of the circuit was monitored however the operators were
again unaware that the temperature monitoring circuit was at the limits of range and
could not display the dangerously high temperature occurring in the tank that caused the
damage that ultimately led to an inflight explosion.

Apollo 13 Service Module showing effects of explosion

It is interesting to note that at the Mission Control Center in Houston and in the onboard
software of the Space Shuttle it was felt that this lesson of Apollo 13 was so important
that a systematic solution was implemented in order to notify flight controllers and
astronauts whenever instruments were at their maximum or minimum range. In both the
Mission Control software and the shuttle onboard software, whenever a parameter is
displayed as numeric text (e.g. 123.4), its value is compared to the maximum or
minimum value of the range of the parameter. If the software determines that the
parameter is at its maximum possible reading (i.e. offscale high), the letter “H” is
displayed next to the parameter (e.g. 123.4H). If the software determines that the
parameter is at the lowest possible reading (i.e. offscale low) then the parameter is
displayed with an L next to it (e.g. 123.4L). In this way, the flight controller or astronaut
is immediately informed if the parameter is at the end of its instrument range.

Learning how to make the system visible and building it so that its behavior is natural and
instinctive for humans is a key element of style in the art of systems engineering.

Reasonableness

Technology moves ahead both in gradual evolution and rapid revolution. Evolution
involves design principles and technology with good heritage. Revolution involves new
design principles and technologies. When attempting both evolutionary and revolutionary
progress, it is vitally important to apply reasonableness tests.

For evolutionary change, reasonableness tests can involve asking questions about the
design principles involved and heritage of technology being utilized. For revolutionary
change, where there is little experience from previous large scale application, it is
important to ask about experience in smaller scale prototypes and the theoretical-model
based analysis and predictions.

The history of technological progress is littered with ideas whose promise was so
appealing that the analysis which showed that the idea was impractical was ignored. In
particular model based analysis and small scale experience is critical when attempting to
do something either never done before or never accomplished on as large a scale as being
attempted. Chiles compares the challenges associated with building the large scale
dirigible R101 with those in developing the Space Shuttle in his book Inviting Disaster
and shows that in both programs there was significant evidence that the programs were
not proceeding along a safe path, In both cases, the allure of routine operational travel in
a new regime was so seductive that people ignored evidence of problems. In NASA we
use the terminology that “the hardware is talking to us” to indicate a situation where
evidence exists that a system is not behaving the way that the designers intended. In both
the R101 case and in the loss of the Challenger, the hardware provided ample evidence
that the systems were not going to behave as anticipated however the benefit of the
technology blinded its proponents from deeper problems.

R101 Before and After

In many cases, the system never really makes it off the drawing board even though
extensive efforts are made. In both the case of the Nuclear Airplane in the 1950’s and the
X-33 Single Stage To Orbiter Demonstrator of the 90’s, the allure of the benefits of a
new technological concept blinded its proponents to analytical evidence that showed that
the concept was not achievable with existing materials and performance. In both cases
there was insufficient experience with small scale applications of the technology to
justify commitment to large scale production.

The only protection against this type of problem is to continually ask reasonableness
questions and to use evidence, whether based on system performance or model based
predictions to evaluate progress against goals.

Complexity

Managing complexity is one of the key aspects of the art of systems engineering.
Understanding and avoiding overly complex solutions is critical. Establishing clean
interfaces which minimize interaction between components is a critical technique. For
example, in Apollo Saturn there were simple clean interfaces between the Apollo
spacecraft and the Saturn Launch Vehicle. The Saturn launch vehicle had its own
complete redundant guidance and control system which was able to deliver the spacecraft
to orbital conditions without interaction from the spacecraft. The mechanical interfaces
were relatively simple and in nominal flight separation between the spacecraft and the
launch vehicle occurred on orbit or after trans-lunar injection. The aerodynamic and
aerothermal interactions between the spacecraft and the launch vehicle were minimal.
The crew escape system did not require co-operation of elements other than the
spacecraft and the abort system.

This can be contrasted with the Space Shuttle design which has complex mechanical
interfaces with significant aerodynamic and aerothermal interactions between the
components. Separation of the Solid Rocket Boosters occurs during a complex flight
regime with significant aerodynamic loads. Essentially all of the avionics are located in
the orbiter and there are complex control and monitoring interfaces which cross element
boundaries. Crew Escape requires significant co-operation between the orbiter and launch
vehicle elements for success.

Clearly, the Space Shuttle system has been successful for over 125 flights. However this
success was based on extensive investments in making this complex configuration work
and verifying the adequacy of all of the design interfaces. Over 15,000 hours of wind
tunnel testing were required to establish this complex configuration. Complexity does not
necessarily mean that a design is unachievable, but it does indicate that a greater
investment of resources will be required in order to make a more complex configuration
reliable. In general, given the difficulty in designing, certifying and operating aerospace
vehicles, a simpler solution is almost always preferable to a more complex solution.
Complex solutions always contain a hidden cost in verification, maintenance and
sustaining engineering activities.

Establishing layers in defining a system is one of our best techniques for managing
complexity. Layers should only be established when they encapsulate a complete
function. Layers should have complete interfaces which provide a clear set of services to
layers above and rely on primitive actions provided by the layers below. Layers should
also provide isolation that minimize and control fault propagation between layers.

Conclusion

Having established seven elements of style in the art of systems engineering, it is
important to apply them in the design and development of systems. Designs, whether in
their preliminary or detailed phase, should be evaluated to determine if they meet the
elements of style. Given the process nature of most of systems engineering, it is natural to
start to identify processes to evaluate a design against these seven elements. After all
anything that can be measured can be evaluated and compared to a standard in a process.
Many of these elements, such as margin in robustness, or even complexity can be
analyzed quantitatively. In software engineering, complexity metrics are a fairly standard
technique to establish risk level for a new piece of software or a software change. Some
readers will undoubtedly attempt to start to build a process using a metric around these
seven elements:

• Robustness
• Elegance
• Balance
• Growth Capability
• Visibility
• Reasonableness
• Complexity

But attempting to build these elements into an analytical process where each item could
be individually be evaluated against a standard would be a mistake, just as if we
attempted to evaluate the beauty of a painting by a numerical analysis of brushstroke
density or angle. These items are not a pass/fail checklist, but rather a point of departure
for discussion. One design is not better than another or rendered adequate or inadequate if
it is more robust or more elegant than another. These elements of style need to be viewed
in a holistic way. For example, designs that are incredibly robust may require less
visibility. For example most automobile engines are very complex but are monitored with
a temperature gauge and perhaps a few alarm limits implemented in warning lights.
Because the engine is robust, it is possible to operate with limited visibility. Only by
evaluating all of these elements in context can we determine the value of a design and
whether or not additional effort is required to implement a well engineered system. Just
as a piece of art can only be evaluated by looking at the total work, the artistry of a good
system can only be evaluated by a total system view of all of the elements of style.

