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Introduction 
 
In modern systems engineering education, we mostly teach process. It is easy to 
understand why. There are many important systems engineering processes which have 
been developed over the years such as configuration management, requirements 
decomposition and hazard analysis. It is also easy to understand why engineering 
educators have focused on these processes. Engineers as a group like process. It is easy to 
teach process because it doesn’t generally require innovative thinking and it is easy to tell 
when you are finished. Further, because many systems engineering processes are 
mandated on US government contracts for large systems development by NASA and the 
military, teaching of process is a lucrative industry for which there is continuing demand. 
 
These systems engineering processes represent significant lessons learned and are an 
important part of successful projects. All good systems engineers should be 
knowledgeable and practiced in them. For examples, at the University of Tennessee 
Space Institute we teach the following processes to graduate students in Aviation 
Systems: 
 

• Requirements Development Functional Decomposition and Allocation 
• Requirements Traceability and Verification 
• Design Review and RID processing 
• Hazard Analysis 
• Risk Management 
• Configuration Management and Change Control 
• Mass Properties Management 
• Interface Control 
• Trade Studies Management and Analysis of Alternatives 
• Technical Performance Metrics and Key Performance Parameters 
• Architecture definition and frameworks 
• Technology Readiness Levels 
• Natural and Induced Environments definition 
 
However, good systems engineering consists of more than just successful execution 
of process. Good systems engineering has a definite component of artistry to it. This 
art of systems engineering is hard to define and the purpose of this chapter is to put 
some definition into the art of systems engineering. This chapter will use a lot of 
aviation examples, as aviation has been around for significantly longer than 
spaceflight and offers many examples of good and bad applications of the art of 



systems engineering. But the subject of this chapter is applicable to all NASA 
systems, whether aircraft or spacecraft, ground systems or flight systems, science 
instruments or supporting systems.  
 
The two natures of SE 
 
In order to perform good systems engineering, you need to use both halves of your 
brain. We know from psychologists that the human brain segregates thinking 
activities into the brain’s two halves. The left half is said to be more analytical, 
helping you with math, logic, and speech The right half helps you think about abstract 
things like music, colors, and shapes.  
 
In systems engineering, there is a left half brain part that is about being compulsive 
about identifying requirements, decomposing them, tracking their verification etc… 
This is the part of the brain that helps you perform the process part of systems 
engineering. Then there is a right half brain part that is about intuitively inquiring 
about and understanding how all the parts of a complex system interact and 
engineering them to interact in desirable and predictable ways. This is the part of the 
brain that helps you do the art of systems engineering. 
 
The importance of both process and art – the bathroom analogy 
 
Good systems engineering is in many ways about using both halves of your brain to 
work on systems problems. It is not only satisfying to use all of the parts of your 
brain, it is also necessary to have successful projects. 
 
To explain the importance of performing well in both the art of systems engineering 
and the process of systems engineering, I like to use an analogy to everyday life. We 
are taught early in life to wash our hands after going to the bathroom. It is good 
advice to prevent the spread of many easily prevented disease organisms. It is also a 
process. 
 
But if you have a serious illness, not caused by the particular pathogens acquired in 
daily hygiene, things like cancer, diabetes or heart disease, you can wash your hands 
all day long and you are not going to stay in good health. In this case, you need more 
serious intervention and simple process is not going to keep you healthy.  
 
Similarly in projects, if you have a good engineering approach in a project, keeping 
track of all those systems engineering processes will keep things healthy. But if you 
have a bad engineering approach, you can run systems engineering processes all day 
long and it isn’t going to fix the fundamental problems. When you have fundamental 
engineering issues of a system nature, then you need the art of systems engineering to 
maker things right.  
 
 
Joint Strike Fighter – Triumph of Art over Process 



 
The Joint Strike Fighter (JSF)  is an interesting example of how art can be more 
important than process in developing systems. The Department of Defense (DOD) ran 
a competition to develop the next generation strike fighter aircraft for multi-service 
and multi-nation use. Two major aerospace companies squared off in a multi-billion 
dollar fight. I was not personally involved in this process, but as best I can determine, 
both companies produced excellent well engineered aircraft that exactly met all of the 
design requirements. But they approached the problem with two different views. 
 
The Boeing team, which produced the X-32 prototype, was optimized to meet all the 
requirements including the specified capabilities with the specified growth 
capabilities. The Boeing prototype represented total execution of a process to deliver 
the minimum cost and minimum risk vehicle to meet the requirements. The JSF had a 
requirement to perform Vertical Takeoff and Landing (VTOL) in addition to 
conventional runway takeoff. In order to meet this requirement, Boeing selected a 
propulsion technology that had been used on the previously selected Harrier aircraft. 
This is called direct-lift technology and involves rotating nozzles that direct engine 
thrust downward. This technology was low risk and met the design requirements but 
is relatively inefficient and did not provide much additional growth capability above 
the required capability and specified growth requirements. 
 
The Lockheed Martin team, which produced the X-35 prototype, decided to pursue a 
more risky approach. They utilized a technique known as lift-fan which involved 
coupling the engine directly to a lift fan which generated the downward flow of air 
for VTOL. This technique is significantly more efficient however it involved a 
complex technology to couple the jet engine to the lift fan which had not really been 
used before. Thjus although this technique had growth potential above the specified 
capability and growth requirements, it involved a higher risk approach.  
To some in the aerospace community, the X-35 also had a significantly more 
appealing outer moldline (partially due to the lift fan and partially due to other 
factors). 
 

 
 
 

Boeing X-32 (left), Lockheed Martin X-35 (right) 



In the end, the DOD selected the Lockheed Martin X-35. The additional growth 
capability provided by the lift fan as well as the outer moldline trumphed over the 
exact fulfillment of the DOD’s specified requirements exhibited by Boeings X-32. 
 

 
X-35 Powered Lift Fan 

 
I would argue that this represented the triumph of art versus process. It represents a 
demonstration that the total vehicle is more than a summary of meeting requirements 
and that often unstated requirements are the most important. It also represents the 
continuing truth of the ancient and totally unscientific right half brain adage of the 
aviation industry “If it looks good, it will fly well”.  
 

How do we define the art of systems engineering ? 
 
If the art is important, how do we define art. After all, most engineers are not artistically 
oriented. I consulted a friend of my who is an artist and although I am assured that I don’t 
understand the process of teaching real art, my left half brain identified the use of 
elements of style as a way of characterizing an art. Pursuing this theme, I identified seven 
elements of style defining the art of systems engineering. This is not a comprehensive list 
and a look forward to dialogue from readers on better identification of these elements. 
But for the purposes of an initial list, the elements of style are captured by systems that 
have the following characteristics: 
 

• Robustness 
• Elegance 
• Balance  
• Growth Capability 
• Visibility 
• Reasonableness 
• Complexity  



 
In this chapter we will examine each of these elements in order to better define them. 
These elements represent a solid framework to use to evaluate system designs and the 
adequacy of systems engineering within a project or program.  
 
Robustness 

 
Robustness is a characteristic that describes the sensitivity of a system to boundary 
conditions or off-nominal conditions and configurations. Robustness answers the 
question as to whether a system gracefully degrades or is there nonlinear behavior of the 
system at its boundaries. It also describes the behavior of the system as components fail 
either within the system or outside the system. 
 
There are known techniques to evaluate robustness. Sensitivity analysis, performed either 
by computer modeling or test, provide visibility into the performance of systems at 
boundary conditions. Sensitivity analysis is a key technique that should be performed 
during system design and verification in almost any type of system. Flight test 
professionals speak of “expanding the envelope”. This is basically a process of 
determining robustness by gradually expanding the envelope of speed and altitude over 
which an aircraft has flown in order to determine its sensitivity. This is an inherently 
hazardous activity and in modern aviation is preceded by extensive simulation in 
computers and ground test facilities such as wind tunnels to understand the sensitivity to 
boundary conditions.  
 
One of the dangers of computer simulation is that computer models are often built with 
linear or simplified models of system performance and they may not be accurate at 
boundary conditions.  
 
Monte Carlo analysis is a technique which can be used with sensitivity analysis as 
multiple parameters can be varied within distributions to determine if combinations of 
parameters can cause unexpected system behavior. 
 
One of the least expensive and most powerful techniques for determining system 
robustness is the application of imagination informed by knowledge of basic fundamental 
sciences and existing predictive data and modeling for a system. System configurations 
can be examined to determine where the linear assumptions break down and the 
sensitivity at those points examined. This type of analysis should be performed on 
systems and subsystems at major system design points. 
 
Characteristics that contribute to robustness are fault tolerance and margin. Systems that 
incorporate features which increase system fault tolerance are usually more robust than 
those which do not. Systems with greater margin about design requirements also are 
usually more robust than those with less margin. Both of these are characteristics which 
should be examined as a part of system design.  
 



Fault tolerance is normally defined as the ability to withstand failure and still perform 
system functions. Systems are characterized by the number of failures that they can 
tolerate while still performing their function. Zero fault tolerant refers to those systems 
where any single fault can invalidate their functioning. Single fault tolerance refers to 
systems that can withstand a fault in any single component and still perform their 
function. Dual and triple fault tolerant systems can support failures in any two or three 
components and still perform their system functioning. 
 
One of the major techniques in fault tolerance is system redundancy. This involves 
placing additional components in a system so that failures in any component do not 
prevent the system from being able to function. This can involve placing additional 
individual components such as adding a primary or secondary battery to an electrical 
system or placing primary and secondary pumps in a fluid loop. It also can involve 
adding an entire system which replicates the functioning of the first.  
 
Redundancy can be in placing additional copies of similar systems or components in a 
system design or in placing dissimilar components that can accomplish the same system 
function. Fault tolerance of support systems such as electrical power is often improved by 
adding additional systems  For example, in the shuttle propulsion system there are two 
Orbital Maneuvering Engines (OME) that are used to change orbits including the deorbit 
orbital maneuver for re-entry. This is an example of similar redundancy. Within each 
engine there system are many redundant components to improve fault tolerance but there 
are many components which cannot be replaced such as the combustion chamber and 
nozzle of each engine. In order to further improve the fault tolerance of the system, the 
orbiter aft facing Reaction Control Jets (RCS) can perform the deorbit maneuver to return 
the crew home. This is a case of dissimilar redundancy. To make this work, fuel and 
oxidizer feed valves are added to the system so that the RCS jets can be fed from the 
propellant tanks that normally support the OME.  



 
Shuttle OMS Pod with aft facing RCS jets 

 
In many types of systems, it is impossible to completely replicate the system. This 
happens commonly in structures. For example it is usually not possible to add additional 
wings to a vehicle. In these cases a margin based approach is used. A design limit load is 



established for a system which defines the highest possible load that a system will 
encounter in its performance envelope. Then a factor of safety is established and the 
system is designed, tested and analyzed to show that it has margin above the required 
design limit load times the factor of safety. This approach is typically used on structures 
and pressure vessels in spacecraft.  
 
In system design it is assumed that when a system is designed with a design limit load 
and factor of safety that it is not susceptible for failure in its environment. Structures, 
pressure vessels, plumbing and electrical wiring are usually dealt with in this manner and 
are assumed to not to be failure proof when operated under their design limits. Note that 
just because components are considered failure proof, it does not mean that connections 
between components automatically inherit that characteristic.  For example, in a 
propulsion system, tanks and plumbing are considered failure proof when operated within 
their design limits but the interface between a tank and a plumbing, a weld or a fitting, 
can fail or leak. In electrical systems, even though wiring is normally considered failure 
proof, it is possible for a short circuit to occur which overstresses or ignites the wiring. 
 
The design of the Saturn V launch vehicle tells us a lot about the importance of 
engineering robustness into system design, even when the requirements, however 
carefully determined and allocated, do not call for it. The original Saturn V first and 
second stage designs met all known requirements with four engines. Von Braun’s team at 
Marshall Space Flight Center added a fifth engine to first and second stage for margin 
above the stated requirements, concerned that weight growth in the Apollo spacecraft 
would invalidate their efforts if this robustness was not added. As it turns out, Apollo 
would not have been possible if that performance had not been available as mass in the 
command/service module and lunar module grew significantly. The additional 
performance also enabled more science content in the later Apollo J missions than in the 
first few lunar missions.  



 
Saturn V First Stage 

 
Robustness does not necessarily have to cost significant weight or even cost. If during 
system design, the designers evaluate the possible interaction between components in 
failure modes, it is often possible to improve fault tolerance without adding complete 
components or systems. For example, in the design of the X-38 flight control system we 
were able to establish single fault tolerance in a system that did not have any replicated 
components. During the X-38  design process we were examining the fly-by-wire control 
systems. Fly-by-wire means that the computer controls the vehicle by sending electrical 
signals that command aerosurfaces (flaps and rudders) to move. During this process we 
asked what would happen if the computer interface electronics failed off. It turned out 
that the off state resulted in a command to the surface actuators that forced the surfaces 
into a hard-over (full range) condition. A few quick simulations showed that this 
configuration was uncontrollable. We then asked the question if the vehicle could be 
controllable if the surfaces failed to any other position. We quickly found that if any one  
surface failed to a mid-range position that the other three surfaces could compensate and 
keep the vehicle stable. Addition of some pull-up resistors ensured that the actuators were 
scaled so that the fail off state of the computer interfaces resulted in mid-range on the 
surfaces. This established a highly robust configuration that was able to withstand loss of 
computer commands to any one surface and yet maintain stable flight. It is worth noting 
that thus change was only possible because of the concerted effort of multiple disciplines 
(avionics, flight controls, flight software) working together for a system goal (stable 
flight in the event of failure).  
 



 
X-38 In Flight 

 
Finally margin can be added by examining where a system becomes nonlinear and then 
adding devices to ensure control of the system as it enters the non-linear region to ensure 
predictable performance. In aviation, one of the most important non-linear behaviors is 
the performance of aircraft as the flow over the wing separates in a stall. Over the years a 
number of devices have been added to warn the operator of this condition (stick shakers, 
stall warning horns, angle of attack indicators) or to control the stall progression (wing 
twist, stall strips, vortex generators, canards) so that the aircraft stalls in a repeatable and 
easily controlled way. It is interesting to note that the first practical heavier than air craft 
of the Wright Brothers employed a canard (a pitch control surface forward of the center 
of gravity) in order to prevent an uncontrollable stall. 
 
Elegance 
The second element of style to be examined is elegance. We define elegance in system 
design as the degree to which a system design reflects simple unifying principles. An 
elegant design is one in which a single simple unified design solves all cases in which the 
system is intended to operate. An inelegant design is one which requires unique and 
different features to deal with cases that the system faces in normal operation. 
 
Design elegance can be determined by examination of the system design over its entire 
intended operating envelope. When this examination reveals that the system needs special 
and distinct design features to deal with different cases, the design is said to be less 
elegant. Requiring special design features does not necessarily mean that a design is bad 
or inappropriate. But as the features become more intrusive and different, the less elegant 
and desirable that the design becomes. Pejoratively, these special features are referred to 
as “kludges” (pronounced “kloodj”).  
 
Balance 
 



A balanced system is one where all of the disciplines of the design are considered and are 
engineered to work together to accomplish a common purpose. A balanced design can 
have certain design aspects that are paramount but all of the other aspects are engineered 
to account for that. For example the Voyager aircraft that flew around the world on a 
single fuel load was optimized for range. “No compromise for range” was Burt Rutan’s 
battle cry during its design and manufacture. However an examination of the design 
shows that propulsion, fuel system, aerodynamics, structure and flight controls were all 
harmonized into a balanced design that had the range to fly around the world un-re-
fueled. Unbalanced designs are often proposed and many are built. But few unbalanced 
designs have sustained superior performance.  
 

 
Voyager 

 
The Helios unmanned solar powered research aircraft provides an interesting case in 
point. Funded by NASA and constructed by Aerovironment, this The Helios Prototype 
was an ultra-lightweight flying wing aircraft with a wingspan of 247 feet (75.3 m), longer 
than the wingspans of the U.S. Air Force C-5 military transport (222 feet (67.7 m) or the 
Boeing 747 (195 feet (59.4 m) or 215 feet (65.5 m), depending on the model).  The 
electrically powered Helios was constructed mostly of composite materials such as 
carbon fiber, graphite epoxy, Kevlar, styrofoam and a thin, transparent plastic skin. On 
August 14, 2001, the Helios Prototype piloted remotely by Greg Kendall reached an 
altitude of 96,863 feet (29,523.8 m), a world record for sustained horizontal flight by a 
winged aircraft. On June 26, 2003, the Helios Prototype broke up and fell into the Pacific 
Ocean about ten miles (16 km) west of the Hawaiian Island Kauai during a systems 
checkout flight in preparation for an endurance test scheduled for the following month. 
This failure was the result of not properly balancing the structural response to gusts, the 
aerodynamics and the flight controls of the vehicle. As the mishap report states “The 
aircraft represents a nonlinear stability and control problem involving complex 
interactions among the flexible structure, unsteady aerodynamics, flight control system, 
propulsion system, the environmental conditions, and vehicle flight dynamics. The 
analysis tools and solution techniques were constrained by conventional and segmented 
linear methodologies that did not provide the proper level of complexity to understand 
the technology interactions on the vehicle’s stability and control characteristics. “ 
 



 
Helios configuration 



 
 

Helios 
 

Balance is hard to achieve because of the nature of discipline engineering required to 
build aerospace craft. As captured in the attached cartoon, most aerospace vehicles 
consist of products produced  by different discipline specialties and they tend to see 
vehicles as being dominated by their contribution. Although this cartoon is amusing, my 
experiences on multiple air and space vehicle designs indicate that it is more often true 
than not. As a result, vehicles where one discipline dominates tend to occur on a regular 
basis. It is interesting to note that more realistic versions many of the vehicles pictured in 
the cartoon were actually built. The GEEBEE, a realistic version of the vehicle pictured 
in the Propulsion Group view, was a racing plane built in the 1930’s and although 
optimized for propulsion, it did not have balance in its stability and control and was not a 
sustained world-beating aircraft. The Supermarine Spitfire, a realistic version of the 
aerodynamicist’s dream aircraft, was successful throughout World War II although it was 
generally considered inferior to the North American P-51 Mustang, which although 
powered by the same engine, had a superior overall configuration. 
 



 
 



 
 

GeeBee 
 



 
 

Supermarine Spitfire 
 
The need for balanced design is why it is vitally important for systems engineers to know 
what is important in a given design. Not all elements of the design get the same attention 
or need the same amount of rigor. In a world of limited resources it is important to 
“sharpen your pencil” only on the important areas of the design. However all elements 
must be considered to ensure that they are working together instead of against each other.  
 



 
P-51 Mustang 

 
Balance must occur not only at the system level but within subsystems as well. Glenn 
Bugos in his book “Engineering the F-4 Phantom II Parts into Systems” talks about he 
need in subsystem design for continuing cycles of  

• Aggregation – finding the parts (often off the shelf) to make a system function 
• Disaggregation – talking them apart to identify the pieces you need 
• Re-aggregation – putting them back together in a way that is optimized for a 

given application 
 

There is so much good off the shelf aerospace hardware available today, and the desire to 
reduce development cost is so important, that we have trained a generation of subsystem 
engineers to aggregate as much off the shelf equipment as they can. We have not 
emphasized that for high performance applications you may need to disaggregate and 
then re-aggregate components into subsystems.  
 
As an example, the X-38 was a prototype for the Crew Return Vehicle for the 
International Space Station intended to serve as an ambulance and a lifeboat for the 
station. It operated as a lifting body during entry and flew under a parafoil during final 
descent and landing. During the initial X-38 test flights we used a separate Guidance, 
Navigation and Control system for two phases of flight – lifting body phase and parafoil 
phase of flight. The parafoil GN&C was off the shelf and it allowed us to partition our 



efforts. As the program progressed it was clear that the parafoil GN&C was very limited 
and that the weight of the separate system was not acceptable for the space test vehicle. 
We took apart the functions of the parafoil GN&C and integrated them with the lifting 
body GN&C resulting in a lighter weight system, with simpler crew interfaces and 
greater functionality 
 
As another example, the telecommunications front-end of the Johnson Space Center 
Mission Control Center in the mid 90’s consisted of close to 100 racks of electronics 
These systems had accumulated over time and as new functionality was required, the 
easiest solution to add onto the system was taken. Each of the racks required spare parts, 
logistics, operations and maintenance personnel. During the MCC redesign, we found 
that the same functions were being reproduced at many places in the architecture 
We repackaged the functionality into less than half of the original number of racks with 
common commercial off the shelf parts. This resulted in significantly reduced operations 
costs and greater automation and functionality. 
 
Balance also involve mutual support between systems. In many cases, deficiencies in one 
subsystem can be compensated for by cooperative design in other subsystems, Two 
examples of this occurred during the X-38 design.   
 
During the design of the X-38 flight control system we had initially a zero fault tolerant 
air data system for sensing angle of attack. The flight mechanics community realized that 
based on the pitch attitude and pitch rate in response to a commanded surface position 
that they could estimate angle of attack sufficiently to maintain control. These parameters 
were available from the inertial measurement system, a separate system from the air data 
system. We built in a system using available inertial sensors to back up the air data 
system 
 
In another example. ElectroMechanical Actuators (EMAs) were used in the X-38 flight 
control system to move the flight control surfaces. EMAs required power to hold loads 
but actually back generated current under certain conditions in the same way that power 
is re-generated in modern hybrid cars. Initially we used current shunts to deal with the 
generated power, but then we learned to put the re-generated power back into the 
batteries. This significantly reduced battery requirements for the vehicle.  
 
 
Growth Capability - Scalability , and Extensibility  
 
Another important element of style is growth capability. It is a simple fact of life that 
most systems have a longer and more diverse operational life than stated in the original 
design requirements. When the Space Shuttle was designed, each vehicle was designed 
for 100 missions with a 10 year operational life. The designers would have been shocked 
to find out that a total of 126 missions were flown over a 30 year life. Many of the current 
problems of the Space Shuttle are due to the fact that the system was designed for a 
relatively short life and was not designed for maintenance or upgrades. It has to be 
remembered that when the Shuttle was designed, the United States had just built 4 



generations of spacecraft (Mercury, Gemini, Apollo and Skylab) in just over a decade. 
The idea of a single spacecraft spanning three decades was simply out of their experience 
or imagination.  
 
In fact, the entire aerospace business has gone to much longer lived systems. The basic 
B-52 was originally designed in the late 50’s and will still be in service in 2010. All of 
our front-line combat aircraft are in similar extensions. 
 
Not only is life extended, but missions change as time goes on. The B-52 for example 
was a long range strategic bomber. With the advent of GPS guided munitions and high 
performance satellite communications links with ground troops, it has evolved into an 
unexpected close support aircraft. Similarly the shuttle was designed for carrying 
deployable satellites and attached payloads. Now the shuttle is almost exclusively 
performing International Space Station (ISS) servicing missions. Even robotic spacecraft 
now are performing secondary or even tertiary missions after their primary missions are 
completed. Sometimes these missions were not even imagined before the spacecraft was 
launched.  
 
So an essential element of style in engineering systems is ensuring the proper growth 
capability is incorporated into the basic system design so that it can be adapted or 
modified as its life is extended and its mission changes. There are three terms we use 
when describing the element of growth. These are excess capability, scalability and 
extensibility.  
 
Systems with excess capability are the easiest to understand. If a launch vehicle has a 
design goal of lofting 35,000 pounds to low earth orbit and it actually can lift 38,000 
pounds, it has 3,000 pounds of excess capability for growth. It is important to realize that 
most systems lose performance as they age. In re-usable systems, some of this is due to 
accumulated weight and wear and tear on components. Accumulated weight can be from 
minor items like dirt, paint, and debris, which nonetheless can add significant weight. In 
addition, as systems are upgraded or maintained, sometimes wire or equipment that is no 
longer functional remains in the system as it may be too difficult to remove. This is very 
typical in wire harnesses as sometimes it is difficult to extract wire that is no longer 
required from existing harnesses without causing collateral damage to other wires in a 
harness during the removal process. Because of this weight growth, additional 
performance is always required at end of life.  
 
Scalability is the ability of a system to grow to provide additional capacity. Scalability 
usually involves the ability of a system to easily add components to add capability. For 
example a computer system that contains 2 processors nominally but that can then add 
additional processors to handle more workload is said to be scale-able. Scalability is very 
difficult to achieve in most aerospace systems as they usually do not scale well because 
of physics based limitations.  
 
Extensibility is the ability to adapt a systems design to incorporate additional functions. 
Extensibility must be designed in from the start to be effective. Extensibility is a property 



that can be achieved by aerospace systems. For example the Russian Mir space station 
and the International Space Stations were/are both extensible systems. 
 
Extensibility is provided by “hooks” and “scars”. Hooks are provisions in software to 
allow growth. For example software can be developed to be able to perform thermal 
control by monitoring a single temperature transducer and then sending a command to a 
heater. When the software is designed, it can be designed to perform control based on 
multiple transducers or to perform the same type of control action on multiple pairs of 
temperature sensors and heaters. When this software is installed in a system that initially 
only has one sensor and one heater but retains the capability to handle additional 
hardware it is said to have “hooks” to handle additional strings of sensors and heaters. 
Scars are provisions in hardware for adding additional functions. An extra power outlet in 
a power system is a simple type of scar.  
 
Techniques exist to help maintain scalability, extensibility and growth capability in 
systems. One technique is to build a established standards, particularly on interfaces. 
Building on standards often facilitates future growth and expansion. Monitoring and 
managing technical budgets that contain a growth reserve during development is another 
way to provide future growth capability. Engineering hooks and scars to extend 
capability during initial design are additional techniques. Growth capability is usually 
limited by physics based limitations, so modeling to understand these limitations can 
sometimes determine how much effort should be expended into maintaining growth 
options. 
 
 To understand the importance of design with growth in mind, the reader should consult 
Glenn Bugos’ excellent book “Engineering the F-4 Phantom II, Parts into Systems” 
published by the Naval Institute Press in 1996. This book describes the life history of the 
F-4 Phantom II, one of the longest lived and most successful combat aircraft of the 20th 
century. In his first chapter, he describes how previous successes and failures had taught 
McDonnell (the designer and manufacturer of the Phantom II) the importance of a multi-
mission aircraft, even though the original Navy specification called only for a fleet 
defense fighter/interceptor. By the end of its life, the Air Force had bought three times as 
many aircraft as the Navy.  The Air Force used these aircraft as fighter bombers,  anti-
surface to air missile and reconnaissance aircraft and many nations bought and built 
variants for a variety of tasks. The decisions to use two engines and provide for two crew 
members provided versatility in the basic airframe that allowed it a long life and multiple 
roles.  
 
 
Visibility 
 
John Aaron, the legendary flight controller of the Apollo 12 and 13 missions and a major 
leader in the development of the Space Shuttle flight software once said to me that 
“software is inherently invisible” and that to understand its function one had to carefully 
design in features, environments and tests to make its functions visible. I would 
generalize John Aaron’s assertion to “All systems are inherently invisible, especially 



software intensive systems”. An essential element of style in systems engineering is to 
recognize this nature of systems and then to design visibility into systems so that their 
functioning can be understood.  
 
There are many “paintbrushes” in the system artist’s toolkit to help ensure systems 
visibility. Instrumentation is a key tool. The design of instrumentation for ground and 
flight test during design verification is critical to well engineered systems. It is impossible 
to verify that systems meet requirements without instrumentation. Given the large amount 
of attention given to master verification plans and requirements verification matrices in 
traditional process based systems engineering, it is remarkable that little focus is provided 
in traditional process based systems engineering into properly instrumenting systems so 
that they can be verified. Instrumentation is usually left to the domain of very specialized 
engineers whose connectivity to the test verification objectives is often tenuous. 
Instrumenting operational systems is even more critical. Operational instrumentation 
must provide visibility to operators to ensure proper system functioning while also 
providing sufficient diagnostic and trend monitoring data to help the maintenance 
organization and the sustaining engineering organization to perform their functions. 
Familiarity with instrumentation techniques, sensor types, their advantages and 
limitations is critical to the art of systems engineering. Instrumentation may consist of 
traditional systems such as sensors for temperature, pressure, voltage etc… or may be 
items such as imagery to verify system performance.  
 
Monitoring the performance of system to compare it to predictions is a key tenet of 
modern systems verification and especially of flight testing. In fact, the mantra of the 
United States Air Force Test Pilot School at Edwards Air Force Base, the original 
inspiration for the term “The Right Stuff” has now become “Predict, Test and Validate”.  
 
A commitment to instrumentation also requires a commitment to record and process the 
data from that instrumentation in order to make it useful in decision making. The process 
of establishing a database of recorded instrumentation so that data can be reviewed for 
emerging trends is a key enabling technology for proper systems engineering of projects. 
The term “data mining” is used to describe the process of examining systems 
performance records in a postflight or non real time environment order to establish trends 
or determine changes in systems behavior. In addition to real time monitoring, it is vitally 
important to postflight compare the performance of the system to predictions and to the 
initial design requirements of the system. It is possible to have excellent real time 
monitoring of a system without a commitment to this type of closed loop trend 
monitoring. Lack of commitment to this process was one of the contributing factors cited 
by the Columbia Accident Investigation Board in the loss of the Space Shuttle Columbia. 
The lack of this type of long term monitoring of trends in navigation data was also 
established as one of the causes of the loss of the Mars Climate Orbiter spacecraft.  
 
Alerts and warnings as well as displays and controls are additional important 
“paintbrushes” in the system artist’s toolkit. These tools can be valuable during systems 
verification as well as during operations and maintenance to provide visibility into 
systems functioning. To properly implement these systems requires both knowledge of 



system monitoring techniques as well as human factors. Given that almost all systems 
ultimately interact with humans, it is also remarkable that human factors is not considered 
a major part of most systems engineering training and practice and is relegated to a 
relatively specialized discipline of human factors experts. Human factors professionals 
are a key resource for any successful systems artist, however the successful system artist 
must have sufficient knowledge in this area to recognize that interface to humans is the 
most pervasive interface in most systems (whether in assembly, test, operations or 
maintenance) and that attention to proper system visibility is critical in almost every 
aspect of the design. This is especially critical in the design of alerts, warnings, displays 
and controls which provide real time visibility into system performance. 
 
The lack of attention to increasing visibility into system function by instrumentation and 
human factors in every aspect of system design can have dire consequences. At least two 
Airbus crashes have been blamed on what is called “mode confusion” This occurs when 
the operator of the system thinks that the system is in one mode of operation when it is 
actually in another. What is particularly interesting about these crashes is their 
relationship to each other. In one crash, the aircraft was approaching the runway and the 
pilot called for a go-around. The pilot thought that the aircraft was in Takeoff Go Around  
(TOGA) Mode which provides maximum thrust/maximum lift to climb away when the 
aircraft was actually in an approach mode which provides a low rate descent. In this case, 
the aircraft continued to descend until it crashed. In the other crash, the pilot was in a 
descent for landing and the aircraft switched to TOGA. The pilot fought with the aircraft 
trying to get it on the runway, while the aircraft was trying to climb away from the 
runway. This resulted in a crash on the runway.  Confusion about the TOGA mode versus 
the descent/approach mode was the cause in both crashes although the situations were 
reversed.  Clearly greater visibility into the software mode was required.  
 
The nuclear accident at Three Mile Island is another case where visibility of the system 
was required but the actual state of the system as invisible to the operators. In this case, a 
Pressure Relief Valve failed open. The open pressure relief valve allowed the liquid level 
in the relief system to climb. The operators were trained to believe that this indication 
was an indication of excess fluid in the core of the reactor, They were desperately 
concerned about the liquid level becoming so high that there was no gas in the top of the 
system to absorb pressure fluctuations. This “hard manifold” case would’ve resulted in a 
rapid system rupture and the escape of radioactivity from the core of the reactor. As a 
result of this concern, they rapidly dumped cooling water from the system causing a drop 
in the cooling liquid level. The liquid level got so low that the reactor dangerously 
overheated. Alternate temperature instrumentation that would have told them that the 
reactor coolant water temperature was dangerously high was defeated because the system 
was at the upper end of its temperature range but did not warn the operators that the 
indicator was at the top of its possible range (offscale). Unaware that the indicator could 
not read higher, the operators assumed that the reactor water was still cool.  This case is 
explained in great detail in James Chiles book “Inviting Disaster, Lessons From the Edge 
of Technology” and represents a solid case where lack of visibility into a system function 
nearly resulted in disaster.  
 



 
Three Mile Island 

 
It is interesting to note that Chiles observes in another chapter of this book that the chain 
of events that led to the Apollo 13 inflight explosion was set in place by overheating of 
heater circuits in an oxygen tank during an off-nominal prelaunch procedure. During this 
procedure, the temperature of the circuit was monitored however the operators were 
again unaware that the temperature monitoring circuit was at the limits of range and 
could not display the dangerously high temperature occurring in the tank that caused the 
damage that ultimately led to an inflight explosion.  
 

 
Apollo 13 Service Module showing effects of explosion 



 
It is interesting to note that at the Mission Control Center in Houston and in the onboard 
software of the Space Shuttle it was felt that this lesson of Apollo 13 was so important 
that a systematic solution was implemented in order to notify flight controllers and 
astronauts whenever instruments were at their maximum or minimum range. In both the 
Mission Control software and the shuttle onboard software, whenever a parameter is 
displayed as numeric text (e.g. 123.4), its value is compared to the maximum or 
minimum value of the range of the parameter. If the software determines that the 
parameter is at its maximum possible reading (i.e. offscale high), the letter “H” is 
displayed next to the parameter (e.g. 123.4H). If the software determines that the 
parameter is at the lowest possible reading (i.e. offscale low) then the parameter is 
displayed with an L next to it (e.g. 123.4L).  In this way, the flight controller or astronaut 
is immediately informed if the parameter is at the end of its instrument range.  
 
Learning how to make the system visible and building it so that its behavior is natural and 
instinctive for humans is a key element of style in the art of systems engineering. 
 
Reasonableness 
 
Technology moves ahead both in gradual evolution and rapid revolution. Evolution 
involves design principles and technology with good heritage. Revolution involves new 
design principles and technologies. When attempting both evolutionary and revolutionary 
progress, it is vitally important to apply reasonableness tests. 
 
For evolutionary change, reasonableness tests can involve asking questions about the 
design principles involved and heritage of technology being utilized. For revolutionary 
change, where there is little experience from previous large scale application, it is 
important to ask about experience in smaller scale prototypes and the theoretical-model 
based analysis and predictions. 
 
The history of technological progress is littered with ideas whose promise was so 
appealing that the analysis which showed that the idea was impractical was ignored. In 
particular model based analysis and small scale experience is critical when attempting to 
do something either never done before or never accomplished on as large a scale as being 
attempted. Chiles compares the challenges associated with building the large scale 
dirigible R101 with those in developing the Space Shuttle in his book Inviting Disaster 
and shows that in both programs there was significant evidence that the programs were 
not proceeding along a safe path, In both cases, the allure of routine operational travel in 
a new regime was so seductive that people ignored evidence of problems. In NASA we 
use the terminology that “the hardware is talking to us” to indicate a situation where 
evidence exists that a system is not behaving the way that the designers intended. In both 
the R101 case and in the loss of the Challenger, the hardware provided ample evidence 
that the systems were not going to behave as anticipated however the benefit of the 
technology blinded its proponents from deeper problems.  



 
R101 Before and After 

 
In many cases, the system never really makes it off the drawing board even though 
extensive efforts are made. In both the case of the Nuclear Airplane in the 1950’s and the 
X-33 Single Stage To Orbiter Demonstrator of the 90’s, the allure of the benefits of a 
new technological concept blinded its proponents to analytical evidence that showed that 
the concept was not achievable with existing materials and performance. In both cases 
there was insufficient experience with small scale applications of the technology to 
justify commitment to large scale production. 
 
The only protection against this type of problem is to continually ask reasonableness 
questions and to use evidence, whether based on system performance or model based 
predictions to evaluate progress against goals. 
 
 
Complexity 
 
Managing complexity is one of the key aspects of the art of systems engineering. 
Understanding and avoiding overly complex solutions is critical. Establishing clean 
interfaces which minimize interaction between components is a critical technique. For 
example, in Apollo Saturn there were simple clean interfaces between the Apollo 
spacecraft and the Saturn Launch Vehicle. The Saturn launch vehicle had its own 
complete redundant guidance and control system which was able to deliver the spacecraft 
to orbital conditions without interaction from the spacecraft. The mechanical interfaces 
were relatively simple and in nominal flight separation between the spacecraft and the 
launch vehicle occurred on orbit or after trans-lunar injection. The aerodynamic and 
aerothermal interactions between the spacecraft and the launch vehicle were minimal. 
The crew escape system did not require co-operation of elements other than the 
spacecraft and the abort system. 
 



This can be contrasted with the Space Shuttle design which has complex mechanical 
interfaces with significant aerodynamic and aerothermal interactions between the 
components. Separation of the Solid Rocket Boosters occurs during a complex flight 
regime with significant aerodynamic loads. Essentially all of the avionics are located in 
the orbiter and there are complex control and monitoring interfaces which cross element 
boundaries. Crew Escape requires significant co-operation between the orbiter and launch 
vehicle elements for success.  
 
Clearly, the Space Shuttle system has been successful for over 125 flights. However this 
success was based on extensive investments in making this complex configuration work 
and verifying the adequacy of all of the design interfaces. Over 15,000 hours of wind 
tunnel testing were required to establish this complex configuration. Complexity does not 
necessarily mean that a design is unachievable, but it does indicate that a greater 
investment of resources will be required in order to make a more complex configuration 
reliable. In general, given the difficulty in designing, certifying and operating aerospace 
vehicles, a simpler solution is almost always preferable to a more complex solution. 
Complex solutions always contain a hidden cost in verification, maintenance and 
sustaining engineering activities.  
 
Establishing layers in defining a system is one of our best techniques for managing 
complexity. Layers should only be established when they encapsulate a complete 
function. Layers should have complete interfaces which provide a clear set of services to 
layers above and rely on primitive actions provided by the layers below. Layers should 
also provide isolation that minimize and control fault propagation between layers.  
 
Conclusion  
 
Having established seven elements of style in the art of systems engineering, it is 
important to apply them in the design and development of systems. Designs, whether in 
their preliminary or detailed phase, should be evaluated to determine if they meet the 
elements of style. Given the process nature of most of systems engineering, it is natural to 
start to identify processes to evaluate a design against these seven elements. After all 
anything that can be measured can be evaluated and compared to a standard in a process. 
Many of these elements, such as margin in robustness, or even complexity can be 
analyzed quantitatively. In software engineering, complexity metrics are a fairly standard 
technique to establish risk level for a new piece of software or a software change. Some 
readers will undoubtedly attempt to start to build a process using a metric around these 
seven elements:  
 

• Robustness 
• Elegance 
• Balance  
• Growth Capability 
• Visibility 
• Reasonableness 
• Complexity  



 
But attempting to build these elements into an analytical process where each item could 
be individually be evaluated against a standard would be a mistake, just as if we 
attempted to evaluate the beauty of a painting by a numerical analysis of brushstroke 
density or angle. These items are not a pass/fail checklist, but rather a point of departure 
for discussion. One design is not better than another or rendered adequate or inadequate if 
it is more robust or more elegant than another. These elements of style need to be viewed 
in a holistic way. For example, designs that are incredibly robust may require less 
visibility. For example most automobile engines are very complex but are monitored with 
a temperature gauge and perhaps a few alarm limits implemented in warning lights. 
Because the engine is robust, it is possible to operate with limited visibility. Only by 
evaluating all of these elements in context can we determine the value of a design and 
whether or not additional effort is required to implement a well engineered system. Just 
as a piece of art can only be evaluated by looking at the total work, the artistry of a good 
system can only be evaluated by a total system view of all of the elements of style. 


